Search results for " Schroedinger equation"
showing 10 items of 11 documents
The table top high frequency lasing device
2015
Atomic and molecular systems, subjected to intense laser pulse, emit typical High-Order Armonic Generation (HHG) spectra. This work aims to investigate the possibility to obtain a laser device by HHG. At this end, we analyzed the emission spectra by a molecular ion driven by a linearly polarized laser field. The temporal behaviour is obtained using the Morlet wavelets transform of emission. The results show that, after filtration of the electromagnetic radiation emitted, it is possible to select a frequency which seems to have almost constant intensity and phase. This characteristic makes possible that HHG from a molecule can be used as high frequency laser fields.
Chaos and nonlinearities in high harmonic generation
2016
Linearity is a fundamental postulate of quantum mechanics which is occasionally the subject of debate. This paper investigates the possibility of checking this assumption by using a laser field. We study the corrections caused by the presence of a small nonlinearity in the Hamiltonian of a quantum system. As a model we use a simplified two-level quantum system whose states are coupled by a small off-diagonal term proportional to the population of the upper level. The nonlinearity causes spontaneous decay of the upper level, shift and broadening of the line and the sensitive dependence of the final state on the initial condition. The presence of a strong laser field, resonant with the atomic…
High-order-harmonic generation in dimensionally reduced systems
2013
The time-dependent wave function of a nanoring driven by a laser field is obtained by exploiting the symmetries inherent to the system and used for studying the properties of the electromagnetic radiation emitted by the nanoring as a function of the polarization state of the laser. The diffused radiation has the characteristics of high-order-harmonic generation. For a noncircularly polarized laser field an extension of the expected cutoff position is evident, indicating that nanorings are efficient sources of radiation. The polarization state of the emitted harmonics can be opportunely controlled by varying the parameters of the pump field. The profile of the absorbed angular moment shows t…
Thermal solitons in nanotubes
2022
Starting from a recent proposal of a nonlinear Maxwell-Cattaneo equation for the heat transport with relaxational effects at nanoscale, in a special case of thermal-wave propagation we derive a nonlinear Schrodinger equation for the amplitudes of the heatflux perturbation. The complete integrability of the obtained equation is investigated in order to prove the existence of infinite conservation laws, as well as the existence of infinite exact solutions. In this regards, we have considered the simplest nontrivial solutions, namely, the bright and dark (thermal) solitons, which may be interesting for energy transport and for information transmission in phononic circuits. (c) 2022 Elsevier B.…
Exact quantum dynamics of interacting spin systems subjected to controllable time dependent magnetic fields
2020
Soliton solutions for an higher order nonlinear Schroedinger equation in optical fiber
2008
The new improvements to increase the bit rate in optical fiber require the propagation of pulse whose temporal width is always lesser. This causes the presence of further terms, linear and nonlinear, in the evolution equation of the pulse. The analysis on the complete integrability of the evolution equation, in a fiber optics with local properties and achieved in a previous paper, is improved dealing with the normal dispersion case, which allows the dark soliton propagation. In the last section special efforts are made to propose some interesting soliton solutions both bright and dark.
Properties of the radiation Emitted by a Laser driven quantum Ring
2015
We present the electromagnetic emission from one electron confined in a quantum ring driven by an intense laser field. We consider both a plain ring and one structured by six potential wells that produce a static tangential force. Through a suitable one-dimensional model we numerically solve the associated Schroedinger equation obtaining the correspondent time evolution of the wave-function. We show that the emission is formed by a wide plateau that can be both quasi-continuum or resolved in discrete lines. We study the dependence of the emitted spectra from the polarization status of the external laser field and in particular we concentrate on the intensity of the emitted lines and of thei…
Laser Assisted Atomic Ionization by a Short XUV Pulse
2015
We report on numerical results of energy spectra of photoelectrons emitted by irradiating an hydrogen atom with a relatively weak single attosecond XUV pulse in the presence of a two-color IR laser pulse. The densities of probabilities have been obtained by treating the interaction of the atom with the XUV radiation at the first order of the time-dependent perturbation theory and describing the emitted electron through the Coulomb-Volkov wavefunction. The results of the calculations agree with the ones found by numerically solving the time-dependent Schrödinger equation. Specifically, we use an algorithm that implements an high recision variant of the Cranck Nicolson integration method and …
Laser driven structured quantum rings
2015
In this work we study harmonic emission from structured quantum rings (SQRs). In SQRs, electrons trapped in two-dimensional structures are further confined by an external potential composed of N scattering centers arranged on a circle. We build a suitable one-dimensional model Hamiltonian describing this class of systems and analytically solve the associated Schödinger equation. We find that the solution can be expressed in terms of Mathieu functions and focus on the specific case of N = 6. By exactly solving the time-dependent Schödinger equation, we then show how the harmonic response to linearly polarized lasers strongly depends on the ring physical parameters. The results illustrate how…
The influence of the quantum nature of nuclei in high harmonic generation from H$_2^+$-like molecular ions
2013
We study the full quantum dynamics of a simple molecular ion driven by an intense laser field. In particular we show that the quantum nature of the nuclear dynamics affects the emitted high harmonic generation (HHG) spectra, strongly reshaping the plateau region. In fact, it is evident that the characteristic flat trend is transformed into a descending trend, with the lower harmonics being two orders of magnitude more intense than the higher harmonics. We show that this effect is more pronounced in the lighter isotopic species of H$_2^+$ molecular ions and we also demonstrate that in this case the contribution to HHG from the antibonding electronic energetic surface is of the same order of …